Show simple item record

dc.contributor.authorSo, Peter T. C.
dc.contributor.authorHeemskerk, Johannes Antonius
dc.contributor.authorTucker-Kellogg, Lisa
dc.contributor.authorNguyen, Binh P.
dc.date.accessioned2017-01-05T18:59:24Z
dc.date.available2017-01-05T18:59:24Z
dc.date.issued2016-12
dc.identifier.issn1752-0509
dc.identifier.urihttp://hdl.handle.net/1721.1/106208
dc.description.abstractBackground Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. Results We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with “ground-truth” segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Conclusion Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.en_US
dc.description.sponsorshipNational University of Singapore (Duke-NUS SRP Phase 2 Research Block Grant)en_US
dc.description.sponsorshipSingapore. National Research Foundation (CREATE programme)en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology (SMART)en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/s12918-016-0372-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleSuperpixel-based segmentation of muscle fibers in multi-channel microscopyen_US
dc.typeArticleen_US
dc.identifier.citationNguyen, Binh P., Hans Heemskerk, Peter T. C. So, and Lisa Tucker-Kellogg. “Superpixel-Based Segmentation of Muscle Fibers in Multi-Channel Microscopy.” BMC Systems Biology 10, no. S5 (December 2016): 39–50.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.mitauthorSo, Peter T. C.
dc.contributor.mitauthorHeemskerk, Johannes Antonius
dc.contributor.mitauthorTucker-Kellogg, Lisa
dc.contributor.mitauthorNguyen, Binh P.
dc.relation.journalBMC Systems Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-12-06T05:51:05Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsNguyen, Binh P.; Heemskerk, Hans; So, Peter T. C.; Tucker-Kellogg, Lisaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4698-6488
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record