Show simple item record

dc.contributor.authorSteele, Stephanie C.
dc.contributor.authorTriantafyllou, Michael S
dc.contributor.authorWeymouth, Gabriel D
dc.date.accessioned2017-01-05T20:34:50Z
dc.date.available2017-01-05T20:34:50Z
dc.date.issued2017-01
dc.date.submitted2016-03
dc.identifier.issn0022-1120
dc.identifier.issn1469-7645
dc.identifier.urihttp://hdl.handle.net/1721.1/106214
dc.description.abstractDynamic shape change of the octopus mantle during fast jet escape manoeuvres results in added mass energy recovery to the energetic advantage of the octopus, giving escape thrust and speed additional to that due to jetting alone. We show through numerical simulations and experimental validation of overall wake behaviour, that the success of the energy recovery is highly dependent on shrinking speed and Reynolds number, with secondary dependence on shape considerations and shrinking amplitude. The added mass energy recovery ratio η[subscript ma], which measures momentum recovery in relation to the maximum momentum recovery possible in an ideal flow, increases with increasing the non-dimensional shrinking parameter σ[superscript ∗]=ȧ[subscript max]/U√(Re[subscript 0]), where ȧ[subscript max] is the maximum shrinking speed, U is the characteristic flow velocity and √(Re0) is the Reynolds number at the beginning of the shrinking motion. An estimated threshold σ[superscript ∗]≈10 determines whether or not enough energy is recovered to the body to produce net thrust. Since there is a region of high transition for 10<σ[superscript ∗]<30 where the recovery performance varies widely and for σ[superscript ∗]>100 added mass energy is recovered at diminishing returns, we propose a design criterion for shrinking bodies to be in the range of 50<σ[superscript ∗]<100, resulting in 61–82 % energy recovery.en_US
dc.language.isoen_US
dc.relation.isversionofhttps://doi.org/10.1017/jfm.2016.701en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSteeleen_US
dc.titleAdded mass energy recovery of octopus-inspired shape changeen_US
dc.typeArticleen_US
dc.identifier.citationSteele, S. C., G. D. Weymouth, and M. S. Triantafyllou. “Added Mass Energy Recovery of Octopus-Inspired Shape Change.” Journal of Fluid Mechanics 810 (November 24, 2016): 155–174.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverSteele, Stephanie Chinen_US
dc.contributor.mitauthorSteele, Stephanie C.
dc.contributor.mitauthorTriantafyllou, Michael S
dc.contributor.mitauthorWeymouth, Gabriel D
dc.relation.journalJournal of Fluid Mechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSteele, S. C.; Weymouth, G. D.; Triantafyllou, M. S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2766-829X
dc.identifier.orcidhttps://orcid.org/0000-0002-4960-7060
dc.identifier.orcidhttps://orcid.org/0000-0001-5080-5016
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record