dc.contributor.author | Meng, Zi Yang | |
dc.contributor.author | Liu, Junwei | |
dc.contributor.author | Qi, Yang | |
dc.contributor.author | Fu, Liang | |
dc.date.accessioned | 2017-01-09T21:14:31Z | |
dc.date.available | 2017-01-09T21:14:31Z | |
dc.date.issued | 2017-01 | |
dc.date.submitted | 2016-12 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/106311 | |
dc.description.abstract | Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10–20 times speedup. | en_US |
dc.description.sponsorship | United States. Department of Energy. Office of Basic Energy Science. Division of Materials Sciences and Engineering. (award DE-SC0010526) | en_US |
dc.description.sponsorship | China. Ministry of Science and Technology. (grant 2016YFA0300502) | en_US |
dc.description.sponsorship | National Natural Science Foundation (China). (grant 11421092) | en_US |
dc.description.sponsorship | National Natural Science Foundation (China). (grant 11574359) | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevB.95.041101 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Physical Society | en_US |
dc.title | Self-learning Monte Carlo method | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Liu, Junwei, et al. "Self-learning Monte Carlo method." Physical Review B, vol. 95, no. 041101, pp. 1-5. ©2017 American Physical Society. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.mitauthor | Liu, Junwei | |
dc.contributor.mitauthor | Qi, Yang | |
dc.contributor.mitauthor | Fu, Liang | |
dc.relation.journal | Physical Review B | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2017-01-04T23:00:02Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | American Physical Society | |
dspace.orderedauthors | Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-8051-7349 | |
dc.identifier.orcid | https://orcid.org/0000-0002-8803-1017 | |
mit.license | PUBLISHER_POLICY | en_US |