Show simple item record

dc.contributor.authorMeng, Zi Yang
dc.contributor.authorLiu, Junwei
dc.contributor.authorQi, Yang
dc.contributor.authorFu, Liang
dc.date.accessioned2017-01-09T21:14:31Z
dc.date.available2017-01-09T21:14:31Z
dc.date.issued2017-01
dc.date.submitted2016-12
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/106311
dc.description.abstractMonte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10–20 times speedup.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Science. Division of Materials Sciences and Engineering. (award DE-SC0010526)en_US
dc.description.sponsorshipChina. Ministry of Science and Technology. (grant 2016YFA0300502)en_US
dc.description.sponsorshipNational Natural Science Foundation (China). (grant 11421092)en_US
dc.description.sponsorshipNational Natural Science Foundation (China). (grant 11574359)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.95.041101en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleSelf-learning Monte Carlo methoden_US
dc.typeArticleen_US
dc.identifier.citationLiu, Junwei, et al. "Self-learning Monte Carlo method." Physical Review B, vol. 95, no. 041101, pp. 1-5. ©2017 American Physical Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLiu, Junwei
dc.contributor.mitauthorQi, Yang
dc.contributor.mitauthorFu, Liang
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-01-04T23:00:02Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsLiu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8051-7349
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record