Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Mid-Atlantic Ridge)
Author(s)
Lissenberg, C. Johan; Rioux, Matthew; MacLeod, Christopher J.; Shimizu, Nobumichi; Bowring, Samuel A.
DownloadBowring_Crystallization depth beneath.pdf (5.422Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Oceanic detachment faults are increasingly recognized as playing an integral role in the seafloor spreading process at slow and ultraslow spreading mid-ocean ridges, with significant consequences for the architecture of the oceanic lithosphere. Although melt supply is considered to play a critical control on the formation and evolution of oceanic detachments, much less well understood is how melts and faults interact and influence each other. Few direct constraints on the locus and depth of melt emplacement in the vicinity of detachments are available. Gabbros drilled in ODP Hole 923A near the intersection of the Mid-Atlantic Ridge and the Kane transform fault (23°N; the MARK area) represent magmas emplaced into the footwall of such a detachment fault and unroofed by it. We here present U-Pb zircon dates for these gabbros and associated diorite veins which, when combined with a tectonic reconstruction of the area, allow us to calculate the depths at which the melts crystallized. Th-corrected single zircon U-Pb dates from three samples range from 1.138 ± 0.062 to 1.213 ± 0.021 Ma. We find a crystallization depth of 6.4 +1.7/−1.3 km, and estimate that the melts parental to the gabbros were initially emplaced up to 1.5 km deeper, at <8 km below the seafloor. The tectonic reconstruction implies that the detachment fault responsible for the exposure of the sampled sequence likely crossed the ridge axis at depth, suggesting that melt emplacement into the footwall of oceanic detachment faults is an important process. The deep emplacement depth we find associated with “detachment mode” spreading at ∼1.2 Ma appears to be significantly greater than the depth of magma reservoirs during the current “magmatic mode” of spreading in the area, suggesting that the northern MARK segment preserves a recent switch between two temporally distinct modes of spreading with fundamentally different lithospheric architecture.
Date issued
2015-12Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Geochemistry, Geophysics, Geosystems
Publisher
American Geophysical Union (AGU)
Citation
Lissenberg, C. Johan et al. “Crystallization Depth beneath an Oceanic Detachment Fault (ODP Hole 923A, Mid-Atlantic Ridge): CRYSTALLIZATION DEPTH.” Geochemistry, Geophysics, Geosystems 17.1 (2016): 162–180.
Version: Final published version
ISSN
1525-2027