Show simple item record

dc.contributor.authorBhargava, Manjul
dc.contributor.authorKane, Daniel M.
dc.contributor.authorLenstra, Hendrik W.
dc.contributor.authorPoonen, Bjorn
dc.contributor.authorRains, Eric
dc.date.accessioned2017-01-12T17:57:50Z
dc.date.available2017-01-12T17:57:50Z
dc.date.issued2015-08
dc.identifier.issn2168-0930
dc.identifier.issn2168-0949
dc.identifier.urihttp://hdl.handle.net/1721.1/106360
dc.description.abstractUsing maximal isotropic submodules in a quadratic module over Z[subscript p], we prove the existence of a natural discrete probability distribution on the set of isomorphism classes of short exact sequences of cofinite type Z[superscript p]-modules, and then conjecture that as E varies over elliptic curves over a fixed global field k, the distribution of 0→E(k)⊗Q[subscript p]/Z[subscript p]→Sel[subscript p∞]E→Ш[p[superscript ∞]]→0 is that one. We show that this single conjecture would explain many of the known theorems and conjectures on ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves. We also prove the existence of a discrete probability distribution on the set of isomorphism classes of finite abelian pp-groups equipped with a nondegenerate alternating pairing, defined in terms of the cokernel of a random alternating matrix over ZpZp, and we prove that the two probability distributions are compatible with each other and with Delaunay’s predicted distribution for ШШ. Finally, we prove new theorems on the fppf cohomology of elliptic curves in order to give further evidence for our conjecture.en_US
dc.description.sponsorshipJohn Simon Guggenheim Memorial Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grants DMS-0841321 and DMS-1069236)en_US
dc.language.isoen_US
dc.publisherInternational Press of Bostonen_US
dc.relation.isversionofhttp://dx.doi.org/10.4310/CJM.2015.v3.n3.a1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleModeling the distribution of ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curvesen_US
dc.typeArticleen_US
dc.identifier.citationBhargava, Manjul et al. “Modeling the Distribution of Ranks, Selmer Groups, and Shafarevich–Tate Groups of Elliptic Curves.” Cambridge Journal of Mathematics 3.3 (2015): 275–321.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorPoonen, Bjorn
dc.relation.journalCambridge Journal of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBhargava, Manjul; Kane, Daniel M.; Lenstra, Hendrik W.; Poonen, Bjorn; Rains, Ericen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8593-2792
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record