Show simple item record

dc.contributor.authorIn, So-Ra
dc.contributor.authorHan, Sang-Ok
dc.contributor.authorIm, Eun Soon
dc.date.accessioned2017-01-12T20:11:03Z
dc.date.available2017-01-12T20:11:03Z
dc.date.issued2013-07
dc.date.submitted2012-12
dc.identifier.issn0921-030X
dc.identifier.issn1573-0840
dc.identifier.urihttp://hdl.handle.net/1721.1/106468
dc.description.abstractThis study investigates the capability of two numerical models, namely the Weather Research and Forecasting (WRF) and Cloud Resolving Storm Simulator (CReSS), to simulate the heavy rainfall that occurred on September 21, 2010 in the middle of the Korean peninsula. This event was considered part of the typical rainfall caused by intense quasi-stationary convection band, leading to a large accumulated rainfall amount within a narrow area. To investigate the relevant characteristics of this heavy rainfall and the feasibility of the numerical models to simulate them, the experiments using both numerical models were designed with a focus on Korea with a horizontal grid spacing of 2 km. The initial and later boundary conditions were interpolated using the output of the mesoscale model of Japan Meteorological Agency and integration spanned the 24-h period from 2100 UTC on September 20, 2010 when the rainfall started in the Yellow Sea. Generally, the spatial distribution and temporal evolution of the rainfall simulated by CReSS are closer than those of the WRF to the in situ observations (655 stations). The WRF simulation reveals the deficiency in capturing the unusual stagnant behavior of this event. The spatial and vertical patterns of reflectivity are consistent with the rainfall pattern, supporting that strong reflectivity coincides with the convective activity that accompanies excessive rainfall. The thermodynamic structure is the main driver of the different behavior between both simulations. The higher equivalent potential temperature, deep moist absolutely unstable layer and strong veering wind shear seen in the CReSS simulation play a role in the development of a favorable environment for inducing convection.en_US
dc.description.sponsorshipNational Institute of Meteorological Research (Korea) (Grant (NIMR-2012-B-7))en_US
dc.description.sponsorshipKorea. Meteorological Administrationen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11069-013-0779-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleNumerical simulation of the heavy rainfall caused by a convection band over Korea: a case study on the comparison of WRF and CReSSen_US
dc.typeArticleen_US
dc.identifier.citationIm, Eun-Soon, So-Ra In, and Sang-Ok Han. “Numerical Simulation of the Heavy Rainfall Caused by a Convection Band over Korea: a Case Study on the Comparison of WRF and CReSS.” Natural Hazards 69, no. 3 (July 23, 2013): 1681–1695.en_US
dc.contributor.departmentSingapore-MIT Alliance in Research and Technology (SMART)en_US
dc.contributor.mitauthorIm, Eun Soon
dc.relation.journalNatural Hazardsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:19:27Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsIm, Eun-Soon; In, So-Ra; Han, Sang-Oken_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record