Show simple item record

dc.contributor.authorUnhelkar, Vaibhav Vasant
dc.contributor.authorPerez D'Arpino, Claudia
dc.contributor.authorShah, Julie A
dc.contributor.authorStirling, Leia A.
dc.date.accessioned2017-01-13T20:45:52Z
dc.date.available2017-01-13T20:45:52Z
dc.date.issued2015-05
dc.identifier.isbn978-1-4799-6923-4
dc.identifier.urihttp://hdl.handle.net/1721.1/106484
dc.description.abstractMobile, interactive robots that operate in human-centric environments need the capability to safely and efficiently navigate around humans. This requires the ability to sense and predict human motion trajectories and to plan around them. In this paper, we present a study that supports the existence of statistically significant biomechanical turn indicators of human walking motions. Further, we demonstrate the effectiveness of these turn indicators as features in the prediction of human motion trajectories. Human motion capture data is collected with predefined goals to train and test a prediction algorithm. Use of anticipatory features results in improved performance of the prediction algorithm. Lastly, we demonstrate the closed-loop performance of the prediction algorithm using an existing algorithm for motion planning within dynamic environments. The anticipatory indicators of human walking motion can be used with different prediction and/or planning algorithms for robotics; the chosen planning and prediction algorithm demonstrates one such implementation for human-robot co-navigation.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2015.7140067en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleHuman-robot co-navigation using anticipatory indicators of human walking motionen_US
dc.typeArticleen_US
dc.identifier.citationUnhelkar, Vaibhav V. et al. “Human-Robot Co-Navigation Using Anticipatory Indicators of Human Walking Motion.” IEEE, 2015. 6183–6190.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology.en_US
dc.contributor.mitauthorUnhelkar, Vaibhav Vasant
dc.contributor.mitauthorPerez D'Arpino, Claudia
dc.contributor.mitauthorShah, Julie A
dc.contributor.mitauthorStirling, Leia A.
dc.relation.journalIEEE International Conference on Robotics and Automation, 2015. ICRA '15.en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsUnhelkar, Vaibhav V.; Perez-D'Arpino, Claudia; Stirling, Leia; Shah, Julie A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4530-189X
dc.identifier.orcidhttps://orcid.org/0000-0002-1999-7395
dc.identifier.orcidhttps://orcid.org/0000-0003-1338-8107
dc.identifier.orcidhttps://orcid.org/0000-0002-0119-1617
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record