MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A natural language planner interface for mobile manipulators

Author(s)
Tellex, Stefanie; Howard, Thomas M.; Roy, Nicholas
Thumbnail
DownloadRoy_A natural language.pdf (814.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Natural language interfaces for robot control aspire to find the best sequence of actions that reflect the behavior intended by the instruction. This is difficult because of the diversity of language, variety of environments, and heterogeneity of tasks. Previous work has demonstrated that probabilistic graphical models constructed from the parse structure of natural language can be used to identify motions that most closely resemble verb phrases. Such approaches however quickly succumb to computational bottlenecks imposed by construction and search the space of possible actions. Planning constraints, which define goal regions and separate the admissible and inadmissible states in an environment model, provide an interesting alternative to represent the meaning of verb phrases. In this paper we present a new model called the Distributed Correspondence Graph (DCG) to infer the most likely set of planning constraints from natural language instructions. A trajectory planner then uses these planning constraints to find a sequence of actions that resemble the instruction. Separating the problem of identifying the action encoded by the language into individual steps of planning constraint inference and motion planning enables us to avoid computational costs associated with generation and evaluation of many trajectories. We present experimental results from comparative experiments that demonstrate improvements in efficiency in natural language understanding without loss of accuracy.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/106494
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE International Conference on Robotics and Automation, 2014. ICRA '14
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Howard, Thomas M., Stefanie Tellex, and Nicholas Roy. “A Natural Language Planner Interface for Mobile Manipulators.” IEEE, 2014. 6652–6659.
Version: Author's final manuscript
ISBN
978-1-4799-3685-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.