dc.contributor.author | Baker, Tania | |
dc.contributor.author | Rivera Rivera, Izarys | |
dc.contributor.author | Roman-Hernandez, Giselle | |
dc.contributor.author | Sauer, Robert T. | |
dc.date.accessioned | 2017-01-18T18:59:38Z | |
dc.date.available | 2017-01-18T18:59:38Z | |
dc.date.issued | 2014-09 | |
dc.date.submitted | 2014-07 | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.issn | 1091-6490 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/106529 | |
dc.description.abstract | The ClpS adaptor collaborates with the AAA+ ClpAP protease to recognize and degrade N-degron substrates. ClpS binds the substrate N-degron and assembles into a high-affinity ClpS-substrate-ClpA complex, but how the N-degron is transferred from ClpS to the axial pore of the AAA+ ClpA unfoldase to initiate degradation is not known. Here we demonstrate that the unstructured N-terminal extension (NTE) of ClpS enters the ClpA processing pore in the active ternary complex. We establish that ClpS promotes delivery only in cis, as demonstrated by mixing ClpS variants with distinct substrate specificity and either active or inactive NTE truncations. Importantly, we find that ClpA engagement of the ClpS NTE is crucial for ClpS-mediated substrate delivery by using ClpS variants carrying “blocking” elements that prevent the NTE from entering the pore. These results support models in which enzymatic activity of ClpA actively remodels ClpS to promote substrate transfer, and highlight how ATPase/motor activities of AAA+ proteases can be critical for substrate selection as well as protein degradation. | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Pre-Doctoral Training Grant T32GM007287) | en_US |
dc.description.sponsorship | Howard Hughes Medical Institute | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grants GM-49224 and Al- 16892) | en_US |
dc.language.iso | en_US | |
dc.publisher | National Academy of Sciences (U.S.) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1073/pnas.1414933111 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | PNAS | en_US |
dc.title | Remodeling of a delivery complex allows ClpS-mediated degradation of N-degron substrates | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Rivera-Rivera, Izarys et al. “Remodeling of a Delivery Complex Allows ClpS-Mediated Degradation of N-Degron Substrates.” Proceedings of the National Academy of Sciences 111.37 (2014): E3853–E3859. © 2014 National Academy of Sciences | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.mitauthor | Baker, Tania | |
dc.contributor.mitauthor | Rivera Rivera, Izarys | |
dc.contributor.mitauthor | Roman-Hernandez, Giselle | |
dc.contributor.mitauthor | Sauer, Robert T. | |
dc.relation.journal | Proceedings of the National Academy of Sciences | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Rivera-Rivera, Izarys; Román-Hernández, Giselle; Sauer, Robert T.; Baker, Tania A. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1987-4029 | |
dc.identifier.orcid | https://orcid.org/0000-0002-1719-5399 | |
dspace.mitauthor.error | true | |
mit.license | PUBLISHER_POLICY | en_US |