MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The thermal evolution of an Earth with strong subduction zones

Author(s)
Conrad, Clinton P.; Hager, Bradford H
Thumbnail
DownloadHager_The thermal evolution.pdf (397.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
It is commonly supposed that plate tectonic rates are controlled by the temperature-dependent viscosity of Earth's deep interior. If this were so, a small decrease in mantle temperature would lead to a large decrease in global heat transport. This negative feedback mechanism would prevent mantle temperatures from changing rapidly with time. We propose alternatively that convection is primarily resisted by the bending of oceanic lithosphere at subduction zones. Because lithospheric strength should not depend strongly on interior mantle temperature, this relationship decreases the sensitivity of heat flow to changes in interior mantle viscosity, and thus permits more rapid temperature changes there. The bending resistance is large enough to limit heat flow rates for effective viscosities of the lithosphere greater than about 1023 Pa s, and increases with the cube of plate thickness. As a result, processes that affect plate thickness, such as small-scale convection or subduction initiation, could profoundly influence Earth's thermal history.
Date issued
1999-10
URI
http://hdl.handle.net/1721.1/106535
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)/Wiley
Citation
Conrad, Clinton P., and Bradford H. Hager. “The Thermal Evolution of an Earth with Strong Subduction Zones.” Geophysical Research Letters vol. 26, no. 19, 1999, pp. 3041–3044. © 1999 American Geophysical Union (AGU).
Version: Final published version
ISSN
00948276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.