MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Airport Runway Configuration: A Discrete-Choice Modeling Approach

Author(s)
Avery, Jacob Bryan; Balakrishnan, Hamsa
Thumbnail
DownloadBalakrishnan_Predicting airport.pdf (820.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The runway configuration is a key driver of airport capacity at any time. Several factors, such as weather conditions (wind and visibility), traffic demand, air traffic controller workload, and the coordination of flows with neighboring airport influence the selection of runway configuration. This paper identifies a discrete-choice model of the configuration selection process from empirical data. The model reflects the importance of various factors in terms of a utility function. Given the weather, traffic demand and the current runway configuration, the model provides a probabilistic forecast of the runway configuration at the next 15-minute interval. This prediction is then extended to obtain the 3-hour probabilistic forecast of runway configuration. The proposed approach is illustrated using case studies based on data from LaGuardia (LGA) and San Francisco (SFO) airports, first by assuming perfect knowledge of weather and demand 3-hours in advance, and then using the Terminal Aerodrome Forecasts (TAFs). The results show that given the actual traffic demand and weather conditions 3 hours in advance, the model predicts the correct runway configuration at LGA with an accuracy of 82%, and at SFO with an accuracy of 85%. Given the forecast weather and scheduled demand, the accuracy of correct prediction of the runway configuration 3 hours in advance is 80% for LGA and 82% for SFO.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/106551
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Proceedings of the [Eleventh] USA/Europe Air Traffic Management Research and Development Seminar, ATM2015
Publisher
Federal Aviation Administration/EUROCONTROL
Citation
Avery, Jacob and Hamsa Balakrishnan. "Predicting Airport Runway Configuration: A Discrete-Choice Modeling Approach" Eleventh USA/Europe Air Traffic Management Research and Development Seminar, Lisbon, Portugal June 23-26, 2015.
Version: Author's final manuscript
Other identifiers
Paper ID 509
ISSN
2406-4068

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.