Show simple item record

dc.contributor.authorMovassagh, Ramis
dc.date.accessioned2017-01-20T23:51:57Z
dc.date.available2017-01-20T23:51:57Z
dc.date.issued2015-12
dc.date.submitted2015-11
dc.identifier.issn0022-4715
dc.identifier.issn1572-9613
dc.identifier.urihttp://hdl.handle.net/1721.1/106582
dc.description.abstractWe prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS. 1312831)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10955-015-1424-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleEigenvalue Attractionen_US
dc.typeArticleen_US
dc.identifier.citationMovassagh, Ramis. “Eigenvalue Attraction.” J Stat Phys 162, no. 3 (December 16, 2015): 615–643.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMovassagh, Ramis
dc.relation.journalJournal of Statistical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:44:47Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsMovassagh, Ramisen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-4078-6752
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record