MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries

Author(s)
Lan, Tian; Kong, Liang; Wen, Xiao-Gang
Thumbnail
DownloadPhysRevB.94.155113.pdf (447.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We propose a systematic framework to classify (2+1)-dimensional (2+1D) fermionic topological orders without symmetry and 2+1D fermionic/bosonic topological orders with symmetry G. The key is to use the so-called symmetric fusion category E to describe the symmetry. Here, E=sRep(Z[subscript 2][superscript f]) describing particles in a fermionic product state without symmetry, or E=sRep(G[superscript f]) [E=Rep(G)] describing particles in a fermionic (bosonic) product state with symmetry G. Then, topological orders with symmetry E are classified by nondegenerate unitary braided fusion categories over E, plus their modular extensions and total chiral central charges. This allows us to obtain a list that contains all 2+1D fermionic topological orders without symmetry. For example, we find that, up to p+ip fermionic topological orders, there are only four fermionic topological orders with one nontrivial topological excitation: (1) the K=([−1 over 0][0 over 2]) fractional quantum Hall state, (2) a Fibonacci bosonic topological order stacking with a fermionic product state, (3) the time-reversal conjugate of the previous one, and (4) a fermionic topological order with chiral central charge c=1/4, whose only topological excitation has non-Abelian statistics with spin s=1/4 and quantum dimension d=1√2.
Date issued
2016-10
URI
http://hdl.handle.net/1721.1/106620
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Lan, Tian, Liang Kong, and Xiao-Gang Wen. “Theory of (2+1)-Dimensional Fermionic Topological Orders and Fermionic/bosonic Topological Orders with Symmetries.” Physical Review B 94.15 (2016): n. pag. © 2016 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.