MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Interpretable Explanations for Transfer Learning in Sequential Tasks

Author(s)
Ramakrishnan, Ramya; Shah, Julie A
Thumbnail
DownloadAAAI-SSS16_FinalPaper.pdf (195.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
People increasingly rely on machine learning (ML) to make intelligent decisions. However, the ML results are often difficult to interpret and the algorithms do not support interaction to solicit clarification or explanation. In this paper, we highlight an emerging research area of interpretable explanations for transfer learning in sequential tasks, in which an agent must explain how it learns a new task given prior, common knowledge. The goal is to enhance a user’s ability to trust and use the system output and to enable iterative feedback for improving the system. We review prior work in probabilistic systems, sequential decision-making, interpretable explanations, transfer learning, and interactive machine learning, and identify an intersection that deserves further research focus. We believe that developing adaptive, transparent learning models will build the foundation for better human-machine systems in applications for elder care, education, and health care.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/106649
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
AAAI 2016 Spring Symposium
Publisher
Association for the Advancement of Artificial Intelligence
Citation
Ramakrishnan, Ramya and Julie Shah. "Towards Interpretable Explanations for Transfer Learning in Sequential Tasks." AAAI Spring Symposium, March 21-23, 2016, Palo Alto, CA.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.