MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the efficiency and accuracy of the single equivalent moving dipole method to identify sites of cardiac electrical activation

Author(s)
Sohn, Kwanghyun; Armoundas, Antonis
Thumbnail
Download11517_2015_Article_1437.pdf (644.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We have proposed an algorithm to guide radiofrequency catheter ablation procedures. This algorithm employs the single equivalent moving dipole (SEMD) to model cardiac electrical activity. The aim of this study is to investigate the optimal time instant during the cardiac cycle as well as the number of beats needed to accurately estimate the location of a pacing site. We have evaluated this algorithm by pacing the ventricular epicardial surface and inversely estimating the locations of pacing electrodes from the recorded body surface potentials. Two pacing electrode arrays were sutured on the right and left ventricular epicardial surfaces in swine. The hearts were paced by the electrodes sequentially at multiple rates (120–220 bpm), and body surface ECG signals from 64 leads were recorded for the SEMD estimation. We evaluated the combined error of the estimated interelectrode distance and SEMD direction at each time instant during the cardiac cycle, and found the error was minimum when the normalized root mean square (RMS[subscript n]) value of body surface ECG signals reached 15 % of its maximum value. The beat-to-beat variation of the SEMD locations was significantly reduced (p < 0.001) when estimated at 15 % RMS[subscript n] compared to the earliest activation time (EAT). In addition, the 5–95 % interval of the estimated interelectrode distance error decreased exponentially as the number of beats used to estimate a median beat increased. When the number of beats was 4 or larger, the 5–95 % interval was smaller than 3.5 mm (the diameter of a commonly used catheter). In conclusion, the optimal time for the SEMD estimation is at 15 % of RMS[subscript n], and at that time instant a median beat estimated from 4 beats is associated with a beat-to-beat variability of the SEMD location that is appropriate for catheter ablation procedures.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/106663
Department
Institute for Medical Engineering and Science
Journal
Medical & Biological Engineering & Computing
Publisher
Springer Berlin Heidelberg
Citation
Sohn, Kwanghyun, and Antonis A. Armoundas. “On the Efficiency and Accuracy of the Single Equivalent Moving Dipole Method to Identify Sites of Cardiac Electrical Activation.” Medical & Biological Engineering & Computing 54, no. 10 (January 22, 2016): 1611–1619.
Version: Author's final manuscript
ISSN
0140-0118
1741-0444

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.