MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A bi-criteria evolutionary algorithm for a constrained multi-depot vehicle routing problem

Author(s)
Agrawal, Vikas; Lightner, Constance; Lightner-Laws, Carin; Wagner, Neal
Thumbnail
Download500_2016_Article_2112.pdf (1.365Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Most research about the vehicle routing problem (VRP) does not collectively address many of the constraints that real-world transportation companies have regarding route assignments. Consequently, our primary objective is to explore solutions for real-world VRPs with a heterogeneous fleet of vehicles, multi-depot subcontractors (drivers), and pickup/delivery time window and location constraints. We use a nested bi-criteria genetic algorithm (GA) to minimize the total time to complete all jobs with the fewest number of route drivers. Our model will explore the issue of weighting the objectives (total time vs. number of drivers) and provide Pareto front solutions that can be used to make decisions on a case-by-case basis. Three different real-world data sets were used to compare the results of our GA vs. transportation field experts’ job assignments. For the three data sets, all 21 Pareto efficient solutions yielded improved overall job completion times. In 57 % (12/21) of the cases, the Pareto efficient solutions also utilized fewer drivers than the field experts’ job allocation strategies.
Date issued
2016-04
URI
http://hdl.handle.net/1721.1/106669
Department
Lincoln Laboratory
Journal
Soft Computing
Publisher
Springer Berlin Heidelberg
Citation
Agrawal, Vikas, Constance Lightner, Carin Lightner-Laws, and Neal Wagner. “A Bi-Criteria Evolutionary Algorithm for a Constrained Multi-Depot Vehicle Routing Problem.” Soft Computing (April 8, 2016).
Version: Author's final manuscript
ISSN
1432-7643
1433-7479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.