MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Verification Driven Process for Rapid Development of CFD Software

Author(s)
Galbraith, Marshall C.; Allmaras, Steven R.; Darmofal, David L.
Thumbnail
DownloadDarmofal_A verification driven.pdf (635.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Previous work by the authors has demonstrated a high-order fully-automated output-error based mesh adaptation method suitable for solving the Reynolds-Averaged Navier-Stokes equations. The high-order of accuracy is achieved with a discontinuous Galerkin discretization. While the adaptation method has proven to provide significant reduction in computational cost relative to second-order methods, the authors are currently exploring alternate high-order finite element discretizations to further reduce the computational cost. However, the previously developed software framework is not suitable for all discretizations of interest. Hence, a new software framework is being developed with enhanced maintainability and flexibility relative to the previous framework. This paper focuses on strategies employed to accelerate the development of the new software framework. A software development environment that promotes a verification driven process for software development is presented. The development environment encourages developers to incorporate the verification principles of Verification and Validation as part of the software development process to promote maintainability and collaboration. The software development is further accelerated through the use of automatic differentiation, which is used here to automatically compute the linearization of a mathematical model. This paper outlines an implementation of automatic differentiation with minimal computational overhead relative to manually written linearizations.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/106675
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Proceedings of the 53rd AIAA Aerospace Sciences Meeting
Publisher
American Institute of Aeronautics and Astronautics
Citation
Galbraith, Marshall C., Steven Allmaras, and David L. Darmofal. “A Verification Driven Process for Rapid Development of CFD Software.” American Institute of Aeronautics and Astronautics, 2015.
Version: Author's final manuscript
ISBN
978-1-62410-343-8

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.