MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release

Author(s)
Cho, Richard W.; Song, Yun; Littleton, J. Troy
Thumbnail
Downloadmain article (2.810Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The SNARE-binding protein complexin (Cpx) has been demonstrated to regulate synaptic vesicle fusion. Previous studies are consistent with Cpx functioning either as a synaptic vesicle fusion clamp to prevent premature exocytosis, or as a facilitator to directly stimulate release. Here we examined conserved roles of invertebrate and mammalian Cpx isoforms in the regulation of neurotransmitter release using the Drosophila neuromuscular junction as a model synapse. We find that SNARE binding by Cpx is required for its role as a fusion clamp. All four mammalian Cpx proteins (mCpx), which have been demonstrated to facilitate release, also function as fusion clamps when expressed in Drosophila cpx null mutants, though their clamping abilities vary between isoforms. Moreover, expression of mCpx I, II or III isoforms dramatically enhance evoked release compared to mCpx IV or Drosophila Cpx. Differences in the clamping and facilitating properties of complexin isoforms can be partially attributed to differences in the C-terminal membrane tethering domain. Our findings indicate that the function of complexins as fusion clamps and facilitators of fusion are conserved across evolution, and that these roles are genetically separable within an isoform and across different isoforms.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/106802
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Molecular and Cellular Neuroscience
Publisher
Elsevier B.V.
Citation
Cho, Richard W., Yun Song, and J. Troy Littleton. “Comparative Analysis of Drosophila and Mammalian Complexins as Fusion Clamps and Facilitators of Neurotransmitter Release.” Molecular and Cellular Neuroscience 45, no. 4 (December 2010): 389-397.
Version: Author's final manuscript
ISSN
10447431

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.