MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding

Author(s)
Guo, Yuchun; Gifford, David K
Thumbnail
Download12864_2016_Article_3434.pdf (2.846Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background The combinatorial binding of trans-acting factors (TFs) to the DNA is critical to the spatial and temporal specificity of gene regulation. For certain regulatory regions, more than one regulatory module (set of TFs that bind together) are combined to achieve context-specific gene regulation. However, previous approaches are limited to either pairwise TF co-association analysis or assuming that only one module is used in each regulatory region. Results We present a new computational approach that models the modular organization of TF combinatorial binding. Our method learns compact and coherent regulatory modules from in vivo binding data using a topic model. We found that the binding of 115 TFs in K562 cells can be organized into 49 interpretable modules. Furthermore, we found that tens of thousands of regulatory regions use multiple modules, a structure that cannot be observed with previous hard clustering based methods. The modules discovered recapitulate many published protein-protein physical interactions, have consistent functional annotations of chromatin states, and uncover context specific co-binding such as gene proximal binding of NFY + FOS + SP and distal binding of NFY + FOS + USF. For certain TFs, the co-binding partners of direct binding (motif present) differs from those of indirect binding (motif absent); the distinct set of co-binding partners can predict whether the TF binds directly or indirectly with up to 95% accuracy. Joint analysis across two cell types reveals both cell-type-specific and shared regulatory modules. Conclusions Our results provide comprehensive cell-type-specific combinatorial binding maps and suggest a modular organization of combinatorial binding. Keywords Computational genomics Transcription factor Combinatorial binding Direct and indirect binding Topic model
Date issued
2017-01
URI
http://hdl.handle.net/1721.1/106853
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
BMC Genomics
Publisher
BioMed Central
Citation
Guo, Yuchun, and David K. Gifford. “Modular Combinatorial Binding among Human Trans-Acting Factors Reveals Direct and Indirect Factor Binding.” BMC Genomics 18.1 (2017): n. pag.
Version: Final published version
ISSN
1471-2164

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.