Show simple item record

dc.contributor.authorSehgal, Alfica
dc.contributor.authorQuerbes, William
dc.contributor.authorZurenko, Christopher S.
dc.contributor.authorJayaraman, Muthusamy
dc.contributor.authorPeng, Chang G.
dc.contributor.authorCharisse, Klaus
dc.contributor.authorBorodovsky, Anna
dc.contributor.authorManoharan, Muthiah
dc.contributor.authorDonahoe, Jessica S.
dc.contributor.authorTruelove, Jessica
dc.contributor.authorNahrendorf, Matthias
dc.contributor.authorLee, Hyuckjin
dc.contributor.authorLytton-Jean, Abigail K. R.
dc.contributor.authorChen, Yi
dc.contributor.authorLove, Kevin T
dc.contributor.authorPark, Angela I.
dc.contributor.authorKaragiannis, Emmanouil
dc.contributor.authorLanger, Robert S
dc.contributor.authorAnderson, Daniel Griffith
dc.date.accessioned2017-02-03T21:56:38Z
dc.date.available2017-02-03T21:56:38Z
dc.date.issued2012-06
dc.date.submitted2011-10
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttp://hdl.handle.net/1721.1/106860
dc.description.abstractNanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)—a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t[subscript 1/2] ≈ 24.2 min) than the parent siRNA (t[subscript 1/2] ≈ 6 min).en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB000244)en_US
dc.description.sponsorshipAlnylam Pharmaceuticals (Firm)en_US
dc.description.sponsorshipNational Research Foundation of Korea (Grant NRF-2011-357-D00063)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) Centers of Cancer and Nanotechnology Excellence (Grant U54 CA151884)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nnano.2012.73en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleMolecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA deliveryen_US
dc.typeArticleen_US
dc.identifier.citationLee, Hyukjin et al. “Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted in Vivo siRNA Delivery.” Nature Nanotechnology 7.6 (2012): 389–393.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorLee, Hyuckjin
dc.contributor.mitauthorLytton-Jean, Abigail K. R.
dc.contributor.mitauthorChen, Yi
dc.contributor.mitauthorLove, Kevin T
dc.contributor.mitauthorPark, Angela I.
dc.contributor.mitauthorKaragiannis, Emmanouil
dc.contributor.mitauthorLanger, Robert S
dc.contributor.mitauthorAnderson, Daniel Griffith
dc.relation.journalNature Nanotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0131-6552
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record