Show simple item record

dc.contributor.authorFerrari, Patrik
dc.contributor.authorVető, Bálint
dc.contributor.authorBorodin, Alexei
dc.contributor.authorCorwin, Ivan
dc.date.accessioned2017-02-03T22:04:44Z
dc.date.available2017-02-03T22:04:44Z
dc.date.issued2015-07
dc.date.submitted2015-03
dc.identifier.issn1385-0172
dc.identifier.issn1572-9656
dc.identifier.urihttp://hdl.handle.net/1721.1/106861
dc.description.abstractWe compute the one-point probability distribution for the stationary KPZ equation (i.e. initial data H(0,X)=B(X), for B(X) a two-sided standard Brownian motion) and show that as time T goes to infinity, the fluctuations of the height function H(T,X) grow like T[superscript 1/3] and converge to those previously encountered in the study of the stationary totally asymmetric simple exclusion process, polynuclear growth model and last passage percolation. The starting point for this work is our derivation of a Fredholm determinant formula for Macdonald processes which degenerates to a corresponding formula for Whittaker processes. We relate this to a polymer model which mixes the semi-discrete and log-gamma random polymers. A special case of this model has a limit to the KPZ equation with initial data given by a two-sided Brownian motion with drift ß to the left of the origin and b to the right of the origin. The Fredholm determinant has a limit for ß > b, and the case where ß = b (corresponding to the stationary initial data) follows from an analytic continuation argument.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-1208998)en_US
dc.description.sponsorshipMicrosoft Researchen_US
dc.description.sponsorshipMassachusetts Institute of Technology (Schramm Memorial Fellowship)en_US
dc.description.sponsorshipClay Mathematics Institute (Clay Research Fellowship)en_US
dc.description.sponsorshipInstitut Henri Poincare (Poincare Chair)en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11040-015-9189-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleHeight Fluctuations for the Stationary KPZ Equationen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei et al. “Height Fluctuations for the Stationary KPZ Equation.” Mathematical Physics, Analysis and Geometry 18.1 (2015): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexei
dc.contributor.mitauthorCorwin, Ivan
dc.relation.journalMathematical Physics, Analysis and Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:20:00Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media Dordrecht
dspace.orderedauthorsBorodin, Alexei; Corwin, Ivan; Ferrari, Patrik; Vető, Bálinten_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record