MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering Effective Responses to Influenza Outbreaks

Author(s)
Nigmatulina, Karima; Finkelstein, Stan Neil; Larson, Richard Charles; Teytelman, Anna
Thumbnail
DownloadFINALrev.1B-Flu Policy Paper 1-20-15.docx (269.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We present a policy-oriented summary of our six-year "service-systems-focused" research into pandemic influenza. We cover three topics: (1) R[subscript 0], the basic reproductive number for the flu; (2) NPIs, non-pharmaceutical inventions to reduce the chance of becoming infected; and (3) flu vaccine allocations. We use a service-systems framing and mathematical modeling approach incorporating theories and data on the spread and control of influenza. We examine how behavioral actions and governmental policies, thoughtfully derived, can minimize influenza’s societal impact. There is widespread misinterpretation that R0 is a numerical constant of a given virus. We argue that it is not, but rather that its value is largely determined by local conditions and actions, many under our individual and collective control. This control is, in the absence of vaccine, intelligent use of NPIs—highly effective in reducing the spread of influenza. Our vaccine analysis relies on government data depicting flu-like cases and vaccines administered during the 2009 H1N1 outbreak. During that outbreak, barely half of all states received allotments of vaccine in time to protect any citizens. The method of vaccine deployment—in proportion to census population—ignored the temporally uneven flu wave progression across the United States.
Date issued
2015-05
URI
http://hdl.handle.net/1721.1/106894
Department
MIT Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Engineering Systems Division
Journal
Service Science
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Finkelstein, Stan N. et al. “Engineering Effective Responses to Influenza Outbreaks.” Service Science 7.2 (2015): 119–131.
Version: Original manuscript
ISSN
2164-3962
2164-3970

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.