Show simple item record

dc.contributor.authorSchwartz, Matthew D.
dc.contributor.authorKomiske, Patrick T.
dc.contributor.authorMetodiev, Eric Mario
dc.date.accessioned2017-02-10T17:26:35Z
dc.date.available2017-02-10T17:26:35Z
dc.date.issued2017-01
dc.date.submitted2017-01
dc.identifier.issn1029-8479
dc.identifier.urihttp://hdl.handle.net/1721.1/106896
dc.description.abstractArtificial intelligence offers the potential to automate challenging data-processing tasks in collider physics. To establish its prospects, we explore to what extent deep learning with convolutional neural networks can discriminate quark and gluon jets better than observables designed by physicists. Our approach builds upon the paradigm that a jet can be treated as an image, with intensity given by the local calorimeter deposits. We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts. Overall, the deep networks match or outperform traditional jet variables. We also find that, while various simulations produce different quark and gluon jets, the neural networks are surprisingly insensitive to these differences, similar to traditional observables. This suggests that the networks can extract robust physical information from imperfect simulations.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Department of Physicsen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/JHEP01(2017)110en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDeep learning in color: towards automated quark/gluon jet discriminationen_US
dc.typeArticleen_US
dc.identifier.citationKomiske, Patrick T., Eric M. Metodiev, and Matthew D. Schwartz. “Deep Learning in Color: Towards Automated Quark/gluon Jet Discrimination.” Journal of High Energy Physics 2017.1 (2017): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorKomiske, Patrick T.
dc.contributor.mitauthorMetodiev, Eric Mario
dc.relation.journalJournal of High Energy Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-01-27T04:20:25Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsKomiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record