Show simple item record

dc.contributor.authorConnelly, Robert
dc.contributor.authorFulek, Radoslav
dc.contributor.authorMorić, Filip
dc.contributor.authorOkamoto, Yoshio
dc.contributor.authorSzabó, Tibor
dc.contributor.authorTóth, Csaba D.
dc.contributor.authorAbel, Zachary R
dc.contributor.authorEisenstat, Sarah Charmian
dc.date.accessioned2017-02-10T18:56:05Z
dc.date.available2017-02-10T18:56:05Z
dc.date.issued2015-05
dc.date.submitted2015-04
dc.identifier.issn0179-5376
dc.identifier.issn1432-0444
dc.identifier.urihttp://hdl.handle.net/1721.1/106900
dc.description.abstractWe study the impact of metric constraints on the realizability of planar graphs. Let G be a subgraph of a planar graph H (where H is the “host” of G). The graph G is free in H if for every choice of positive lengths for the edges of G, the host H has a planar straight-line embedding that realizes these lengths; and G is extrinsically free in H if all constraints on the edge lengths of G depend on G only, irrespective of additional edges of the host H. We characterize the planar graphs G that are free in every host H, G⊆H, and all the planar graphs G that are extrinsically free in every host H, G⊆H. The case of cycles G=C[subscript k] provides a new version of the celebrated carpenter’s rule problem. Even though cycles C[subscript k], k≥4, are not extrinsically free in all triangulations, it turns out that “nondegenerate” edge lengths are always realizable, where the edge lengths are considered degenerate if the cycle can be flattened (into a line) in two different ways. Separating triangles, and separating cycles in general, play an important role in our arguments. We show that every star is free in a 4-connected triangulation (which has no separating triangle).en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00454-015-9704-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleFree Edge Lengths in Plane Graphsen_US
dc.typeArticleen_US
dc.identifier.citationAbel, Zachary et al. “Free Edge Lengths in Plane Graphs.” Discrete & Computational Geometry 54.1 (2015): 259–289.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAbel, Zachary R
dc.contributor.mitauthorEisenstat, Sarah Charmian
dc.relation.journalDiscrete & Computational Geometryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:14:19Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsAbel, Zachary; Connelly, Robert; Eisenstat, Sarah; Fulek, Radoslav; Morić, Filip; Okamoto, Yoshio; Szabó, Tibor; Tóth, Csaba D.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-4295-1117
dc.identifier.orcidhttps://orcid.org/0000-0002-3182-1675
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record