MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Power of Non-adaptive Learning Graphs

Author(s)
Belovs, Aleksandrs; Rosmanis, Ansis
Thumbnail
Download37_2014_Article_84.pdf (453.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce a notion of the quantum query complexity of a certificate structure. This is a formalization of a well-known observation that many quantum query algorithms only require the knowledge of the position of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays and generalizes the quantum query lower bound for the k-sum problem derived recently by Belovs and Špalek (Proceeding of 4th ACM ITCS, 323–328, 2013). Finally, we use these results to show that the learning graph for the triangle problem by Lee et al. (Proceeding of 24th ACM-SIAM SODA, 1486–1502, 2013) is almost optimal in the above settings. This also gives a quantum query lower bound for the triangle sum problem.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/106914
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
computational complexity
Publisher
Springer Basel
Citation
Belovs, Aleksandrs, and Ansis Rosmanis. “On the Power of Non-Adaptive Learning Graphs.” Comput. Complex. 23, no. 2 (May 13, 2014): 323–354.
Version: Author's final manuscript
ISSN
1016-3328
1420-8954

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.