Show simple item record

dc.contributor.authorBelovs, Aleksandrs
dc.date.accessioned2017-02-10T21:17:43Z
dc.date.available2017-02-10T21:17:43Z
dc.date.issued2015-04
dc.identifier.issn1016-3328
dc.identifier.issn1420-8954
dc.identifier.urihttp://hdl.handle.net/1721.1/106915
dc.description.abstractIn this paper, we study the following variant of the junta learning problem. We are given oracle access to a Boolean function f on n variables that only depends on k variables, and, when restricted to them, equals some predefined function h. The task is to identify the variables the function depends on.When h is the XOR or the OR function, this gives a restricted variant of the Bernstein–Vazirani or the combinatorial group testing problem, respectively. We analyze the general case using the adversary bound and give an alternative formulation for the quantum query complexity of this problem. We construct optimal quantum query algorithms for the cases when h is the OR function (complexity is Θ(√k) ) or the exact-half function (complexity is O(k[supercript 1/4])). The first algorithm resolves an open problem from Ambainis & Montanaro (Quantum Inf Comput 14(5&6): 439–453, 2014). For the case when h is the majority function, we prove an upper bound of O(k[supercript 1/4]). All these algorithms can be made exact. We obtain a quartic improvement when compared to the randomized complexity (if h is the exact-half or the majority function), and a quadratic one when compared to the non-adaptive quantum complexity (for all functions considered in the paper).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Scott Aaronson’s Alan T. Waterman Award)en_US
dc.publisherSpringer Baselen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00037-015-0099-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Baselen_US
dc.titleQuantum Algorithms for Learning Symmetric Juntas via the Adversary Bounden_US
dc.typeArticleen_US
dc.identifier.citationBelovs, Aleksandrs. “Quantum Algorithms for Learning Symmetric Juntas via the Adversary Bound.” Comput. Complex. 24, no. 2 (April 17, 2015): 255–293.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorBelovs, Aleksandrs
dc.relation.journalcomputational complexityen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:40:17Z
dc.language.rfc3066en
dc.rights.holderSpringer Basel
dspace.orderedauthorsBelovs, Aleksandrsen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record