Show simple item record

dc.contributor.authorAlpert, Hannah
dc.contributor.authorIglesias, Jennifer
dc.date.accessioned2017-02-10T22:36:18Z
dc.date.available2017-02-10T22:36:18Z
dc.date.issued2012-03
dc.identifier.issn1016-3328
dc.identifier.issn1420-8954
dc.identifier.urihttp://hdl.handle.net/1721.1/106920
dc.description.abstractIn 2003, it was claimed that the following problem was solvable in polynomial time: do there exist k edge-disjoint paths of length exactly 3 between vertices s and t in a given graph? The proof was flawed, and in this note we show that this problem is NP-hard. We use a reduction from Partial Orientation, a problem recently shown by Pálvölgyi to be NP-hard.en_US
dc.publisherSP Birkhäuser Verlag Baselen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00037-012-0038-4en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSP Birkhäuser Verlag Baselen_US
dc.titleLength 3 Edge-Disjoint Paths Is NP-Harden_US
dc.typeArticleen_US
dc.identifier.citationAlpert, Hannah, and Jennifer Iglesias. “Length 3 Edge-Disjoint Paths Is NP-Hard.” Comput. Complex. 21, no. 3 (March 21, 2012): 511–513.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAlpert, Hannah
dc.relation.journalcomputational complexityen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:40:14Z
dc.language.rfc3066en
dc.rights.holderSpringer Basel AG
dspace.orderedauthorsAlpert, Hannah; Iglesias, Jenniferen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-5813-5029
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record