| dc.contributor.author | Datchev, Kiril | |
| dc.date.accessioned | 2017-02-10T22:46:35Z | |
| dc.date.available | 2017-02-10T22:46:35Z | |
| dc.date.issued | 2014-04 | |
| dc.identifier.issn | 1016-443X | |
| dc.identifier.issn | 1420-8970 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/106921 | |
| dc.description.abstract | We give an elementary proof of Burq’s resolvent bounds for long range semiclassical Schrödinger operators. Globally, the resolvent norm grows exponentially in the inverse semiclassical parameter, and near infinity it grows linearly. We also weaken the regularity assumptions on the potential. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
| dc.publisher | Springer Basel | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1007/s00039-014-0273-8 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | Springer Basel | en_US |
| dc.title | Quantitative Limiting Absorption Principle in the Semiclassical Limit | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Datchev, Kiril. “Quantitative Limiting Absorption Principle in the Semiclassical Limit.” Geometric and Functional Analysis 24, no. 3 (April 29, 2014): 740–747. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Datchev, Kiril | |
| dc.relation.journal | Geometric and Functional Analysis | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2016-08-18T15:40:20Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | Springer Basel | |
| dspace.orderedauthors | Datchev, Kiril | en_US |
| dspace.embargo.terms | N | en |
| mit.license | PUBLISHER_POLICY | en_US |