Show simple item record

dc.contributor.authorDatchev, Kiril
dc.date.accessioned2017-02-10T22:46:35Z
dc.date.available2017-02-10T22:46:35Z
dc.date.issued2014-04
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/106921
dc.description.abstractWe give an elementary proof of Burq’s resolvent bounds for long range semiclassical Schrödinger operators. Globally, the resolvent norm grows exponentially in the inverse semiclassical parameter, and near infinity it grows linearly. We also weaken the regularity assumptions on the potential.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.publisherSpringer Baselen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-014-0273-8en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Baselen_US
dc.titleQuantitative Limiting Absorption Principle in the Semiclassical Limiten_US
dc.typeArticleen_US
dc.identifier.citationDatchev, Kiril. “Quantitative Limiting Absorption Principle in the Semiclassical Limit.” Geometric and Functional Analysis 24, no. 3 (April 29, 2014): 740–747.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDatchev, Kiril
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-08-18T15:40:20Z
dc.language.rfc3066en
dc.rights.holderSpringer Basel
dspace.orderedauthorsDatchev, Kirilen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record