MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representations of classical Lie groups and quantized free convolution

Author(s)
Bufetov, Alexey; Gorin, Vadim
Thumbnail
Download39_2015_Article_323.pdf (1.102Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study the decompositions into irreducible components of tensor products and restrictions of irreducible representations for all series of classical Lie groups as the rank of the group goes to infinity. We prove the Law of Large Numbers for the random counting measures describing the decomposition. This leads to two operations on measures which are deformations of the notions of the free convolution and the free projection. We further prove that if one replaces counting measures with others coming from the work of Perelomov and Popov on the higher order Casimir operators for classical groups, then the operations on the measures turn into the free convolution and projection themselves. We also explain the relation between our results and limit shape theorems for uniformly random lozenge tilings with and without axial symmetry.
Date issued
2015-03
URI
http://hdl.handle.net/1721.1/106922
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Geometric and Functional Analysis
Publisher
Springer Basel
Citation
Bufetov, Alexey, and Vadim Gorin. “Representations of Classical Lie Groups and Quantized Free Convolution.” Geometric and Functional Analysis 25, no. 3 (March 6, 2015): 763–814.
Version: Author's final manuscript
ISSN
1016-443X
1420-8970

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.