MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion

Author(s)
Pan, Wenyong; Innanen, Kristopher A.; Margrave, Gary F.; Li, Junxiao; Fang, Xinding; Fehler, Michael; ... Show more Show less
Thumbnail
DownloadEstimation of elastic.pdf (2.702Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In seismic full-waveform inversion (FWI), subsurface parameters are estimated by iteratively minimizing the difference between the modeled and the observed data. We have considered the problem of estimating the elastic constants of a fractured medium using multiparameter FWI and modeling naturally fractured reservoirs as equivalent anisotropic media. Multiparameter FWI, although promising, remains exposed to a range of challenges, one being the parameter crosstalk problem resulting from the overlap of Fréchet derivative wavefields. Parameter crosstalk is strongly influenced by the form of the scattering pattern for each parameter. We have derived 3D radiation patterns associated with scattering from a range of elastic constants in general anisotropic media. Then, we developed scattering patterns specific to a horizontal transverse isotropic (HTI) medium to draw conclusions about parameter crosstalk in FWI. Bare gradients exhibit crosstalk, as well as artifacts caused by doubly scattered energy in the data residuals. The role of the multiparameter Gauss-Newton (GN) Hessian in suppressing parameter crosstalk is revealed. We have found that the second-order term in the multiparameter Hessian, which is associated with multiparameter second-order scattering effects, can be constructed with the adjoint-state technique. We have examined the analytic scattering patterns for HTI media with a 2D numerical example. We have examined the roles played by the first- and second-order terms in multiparameter Hessian to suppress parameter crosstalk and second-order scattering artifacts numerically. We have also compared the multiparameter GN and full-Newton methods as methods for determining the elastic constants in HTI media with a two-block-layer model.
Date issued
2016-07
URI
http://hdl.handle.net/1721.1/106926
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
GEOPHYSICS
Publisher
Society of Exploration Geophysicists
Citation
Pan, Wenyong et al. “Estimation of Elastic Constants for HTI Media Using Gauss-Newton and Full-Newton Multiparameter Full-Waveform Inversion.” GEOPHYSICS 81.5 (2016): R275–R291. © 2016 Society of Exploration Geophysicists
Version: Final published version
ISSN
0016-8033
1942-2156

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.