MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds

Author(s)
Ahrens, Caroline C.; Welch, M. Elizabeth; Griffith, Linda G; Hammond, Paula T
Thumbnail
DownloadUncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds.pdf (1019.Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Grafted synthetic polypeptides hold appeal for extending the range of biophysical properties achievable in synthetic extracellular matrix (ECM) hydrogels. Here, N-carboxyanhydride polypeptide, poly(γ-propargyl-l-glutamate) (PPLG) macromers were generated by fully grafting the “clickable” side chains with mixtures of short polyethylene glycol (PEG) chains terminated with inert (−OH) or reactive (maleimide and/or norbornene) groups, then reacting a fraction of these groups with an RGD cell attachment motif. A panel of synthetic hydrogels was then created by cross-linking the PPLG macromers with a 4-arm PEG star molecule. Compared to well-established PEG-only hydrogels, gels containing PPLG exhibited dramatically less dependence on swelling as a function of cross-link density. Further, PPLG-containing gels, which retain an α-helical chain conformation, were more effective than standard PEG gels in fostering attachment of a human mesenchymal stem cell (hMSC) line for a given concentration of RGD in the gel. These favorable properties of PPLG-containing PEG hydrogels suggest they may find broad use in synthetic ECM.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/106938
Department
David H. Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Center for Gynepathology Research; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Biomacromolecules
Publisher
American Chemical Society (ACS)
Citation
Ahrens, Caroline C. et al. “Uncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds.” Biomacromolecules 16.12 (2015): 3774–3783.
Version: Author's final manuscript
ISSN
1525-7797
1526-4602

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.