MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ADAM8 as a drug target in pancreatic cancer

Author(s)
Schlomann, Uwe; Koller, Garrit; Conrad, Catharina; Ferdous, Taheera; Golfi, Panagiota; Garcia, Adolfo Molejon; Höfling, Sabrina; Parsons, Maddy; Costa, Patricia; Soper, Robin; Bossard, Maud; Hagemann, Thorsten; Roshani, Rozita; Sewald, Norbert; Ketchem, Randal R.; Moss, Marcia L.; Rasmussen, Fred H.; Tuveson, David A.; Nimsky, Christopher; Bartsch, Jörg W.; Miller, Miles Aaron; Lauffenburger, Douglas A; ... Show more Show less
Thumbnail
DownloadADAM8 as a drug.pdf (3.408Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a grim prognosis with <5% survivors after 5 years. High expression levels of ADAM8, a metalloprotease disintegrin, are correlated with poor clinical outcome. We show that ADAM8 expression is associated with increased migration and invasiveness of PDAC cells caused by activation of ERK1/2 and higher MMP activities. For biological function, ADAM8 requires multimerization and associates with β1 integrin on the cell surface. A peptidomimetic ADAM8 inhibitor, BK-1361, designed by structural modelling of the disintegrin domain, prevents ADAM8 multimerization. In PDAC cells, BK-1361 affects ADAM8 function leading to reduced invasiveness, and less ERK1/2 and MMP activation. BK-1361 application in mice decreased tumour burden and metastasis of implanted pancreatic tumour cells and provides improved metrics of clinical symptoms and survival in a Kras[superscript G12D]-driven mouse model of PDAC. Thus, our data integrate ADAM8 in pancreatic cancer signalling and validate ADAM8 as a target for PDAC therapy.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/106940
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Schlomann, Uwe et al. “ADAM8 as a Drug Target in Pancreatic Cancer.” Nature Communications 6 (2015): 6175.
Version: Author's final manuscript
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.