MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics

Author(s)
de Waal, Luc; Lewis, Timothy A; Rees, Matthew G; Tsherniak, Aviad; Wu, Xiaoyun; Choi, Peter S; Gechijian, Lara; Hartigan, Christina; Faloon, Patrick W; Hickey, Mark J; Tolliday, Nicola; Carr, Steven A; Clemons, Paul A; Munoz, Benito; Wagner, Bridget K; Shamji, Alykhan F; Schenone, Monica; Burgin, Alex B; Schreiber, Stuart L; Greulich, Heidi; Meyerson, Matthew; Koehler, Angela Nicole; ... Show more Show less
Thumbnail
DownloadKoehler_Identification of cancer.pdf (1.422Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the gene PDE3A, encoding phosphodiesterase 3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells, whereas others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggestive of a neomorphic activity. Coexpression of SLFN12 with PDE3A correlates with DNMDP sensitivity, whereas depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery.
Date issued
2015-12
URI
http://hdl.handle.net/1721.1/106947
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Nature Chemical Biology
Publisher
Nature Publishing Group
Citation
de Waal, Luc et al. “Identification of Cancer-Cytotoxic Modulators of PDE3A by Predictive Chemogenomics.” Nature Chemical Biology 12.2 (2015): 102–108.
Version: Author's final manuscript
ISSN
1552-4450
1552-4469

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.