Show simple item record

dc.contributor.authorLim, Emmanuel Gocheco
dc.contributor.authorDames, Enoch E.
dc.contributor.authorCedrone, Kevin David
dc.contributor.authorAcocella, Angela Josephine
dc.contributor.authorNeedham, Thomas R.
dc.contributor.authorCohn, Daniel R
dc.contributor.authorBromberg, Leslie
dc.contributor.authorCheng, Wai K
dc.contributor.authorGreen, William H
dc.contributor.authorArce, Andrea, S.B. Massachusetts Institute of Technology
dc.date.accessioned2017-02-16T15:48:04Z
dc.date.available2017-02-16T15:48:04Z
dc.date.issued2016-03
dc.date.submitted2015-09
dc.identifier.issn0008-4034
dc.identifier.issn1939-019X
dc.identifier.urihttp://hdl.handle.net/1721.1/106955
dc.description.abstractMethane (CH[subscript 4]) reforming was carried out in an internal combustion engine (an “engine reformer”). We successfully produced syngas from the partial oxidation of natural gas in the cylinder of a diesel engine that was reconfigured to perform spark ignition. Performing the reaction in an engine cylinder allows some of the exothermicity to be captured as useful work. Intake conditions of 110 kPa and up to 480 °C allowed low cycle-to-cycle variability (COV[subscript nimep] < 20 %) at methane-air equivalence ratios (ϕ[subscript M]) of 2.0, producing syngas with an H[subscript 2]-to-CO ratio of 1.4. Spark ignition timing was varied between 45–30° before top-dead-center (BTDC) piston position, showing significant improvement with delayed timing. Hydrogen (H[subscript 2]) and ethane (C[subscript 2]H[subscript 6]) were added to simulate recycle from a downstream synthesis reactor and realistic natural gas compositions, respectively. Adding these gases yielded a stable combustion up to hydrocarbon-air equivalence ratios (ϕ[subscript HC]) of 2.8 with COV[subscript nimep] < 5 %. Ethane concentrations (with respect to methane) of up to 0.2 L/L (20 vol%) (with and without H[subscript 2]) produced robust and stable combustions, demonstrating that the engine can be operated across a range of natural gas compositions. Engine exhaust soot concentrations demonstrated elevated values at ϕ[subscript HC] > 2.4, but < 1 mg/L below these equivalence ratios. These results demonstrate that the engine reformer could be a key component of a compact gas-to-liquids synthesis plant by highlighting the operating conditions under which high gas conversion, high H[subscript 2]-to-CO ratios close to 2.0, and low soot production are possible.en_US
dc.description.sponsorshipUnited States. Advanced Research Projects Agency-Energy (Award DE-AR0000506)en_US
dc.description.sponsorshipResearch Triangle Initiativeen_US
dc.description.sponsorshipMIT Energy Initiativeen_US
dc.description.sponsorshipMassachusetts Institute of Technology. Tata Center for Technology and Designen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/cjce.22443en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleThe engine reformer: Syngas production in an engine for compact gas-to-liquids synthesisen_US
dc.typeArticleen_US
dc.identifier.citationLim, Emmanuel G. et al. “The Engine Reformer: Syngas Production in an Engine for Compact Gas-to-Liquids Synthesis.” The Canadian Journal of Chemical Engineering 94.4 (2016): 623–635.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentMIT Energy Initiativeen_US
dc.contributor.mitauthorLim, Emmanuel Gocheco
dc.contributor.mitauthorDames, Enoch E.
dc.contributor.mitauthorCedrone, Kevin David
dc.contributor.mitauthorAcocella, Angela Josephine
dc.contributor.mitauthorNeedham, Thomas R.
dc.contributor.mitauthorArce, Andrea
dc.contributor.mitauthorCohn, Daniel R
dc.contributor.mitauthorBromberg, Leslie
dc.contributor.mitauthorCheng, Wai K
dc.contributor.mitauthorGreen, William H
dc.relation.journalThe Canadian Journal of Chemical Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLim, Emmanuel G.; Dames, Enoch E.; Cedrone, Kevin D.; Acocella, Angela J.; Needham, Thomas R.; Arce, Andrea; Cohn, Daniel R.; Bromberg, Leslie; Cheng, Wai K.; Green, William H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6295-7807
dc.identifier.orcidhttps://orcid.org/0000-0002-7044-8156
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record