Show simple item record

dc.contributor.authorXiao, Jianxiong
dc.contributor.authorEhinger, Krista A.
dc.contributor.authorHays, James
dc.contributor.authorTorralba, Antonio
dc.contributor.authorOliva, Aude
dc.date.accessioned2017-02-16T18:19:08Z
dc.date.available2017-02-16T18:19:08Z
dc.date.issued2014-08
dc.date.submitted2013-06
dc.identifier.issn0920-5691
dc.identifier.issn1573-1405
dc.identifier.urihttp://hdl.handle.net/1721.1/106970
dc.description.abstractProgress in scene understanding requires reasoning about the rich and diverse visual environments that make up our daily experience. To this end, we propose the Scene Understanding database, a nearly exhaustive collection of scenes categorized at the same level of specificity as human discourse. The database contains 908 distinct scene categories and 131,072 images. Given this data with both scene and object labels available, we perform in-depth analysis of co-occurrence statistics and the contextual relationship. To better understand this large scale taxonomy of scene categories, we perform two human experiments: we quantify human scene recognition accuracy, and we measure how typical each image is of its assigned scene category. Next, we perform computational experiments: scene recognition with global image features, indoor versus outdoor classification, and “scene detection,” in which we relax the assumption that one image depicts only one scene category. Finally, we relate human experiments to machine performance and explore the relationship between human and machine recognition errors and the relationship between image “typicality” and machine recognition accuracy.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1016862)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award 0747120)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11263-014-0748-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleSUN Database: Exploring a Large Collection of Scene Categoriesen_US
dc.typeArticleen_US
dc.identifier.citationXiao, Jianxiong et al. “SUN Database: Exploring a Large Collection of Scene Categories.” International Journal of Computer Vision 119.1 (2016): 3–22.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorOliva, Aude
dc.contributor.mitauthorTorralba, Antonio
dc.relation.journalInternational Journal of Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-06-30T12:07:40Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsXiao, Jianxiong; Ehinger, Krista A.; Hays, James; Torralba, Antonio; Oliva, Audeen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record