Show simple item record

dc.contributor.authorRego, Ana M. B.
dc.contributor.authorAguiar-Ricardo, Ana
dc.contributor.authorReis, Tiago C.
dc.contributor.authorCastleberry, Steven A
dc.contributor.authorHammond, Paula T.
dc.date.accessioned2017-02-23T16:45:34Z
dc.date.available2017-02-23T16:45:34Z
dc.date.issued2016-01
dc.date.submitted2015-06
dc.identifier.issn2047-4830
dc.identifier.issn2047-4849
dc.identifier.urihttp://hdl.handle.net/1721.1/107120
dc.description.abstractElectrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is reported the production of three-dimensional fibrous materials with an asymmetrical inner structure and engineered surfaces. The manufactured constructs evidence fibrous-based microsized conical protrusions [length: (10 ± 3) × 10[superscript 2] μm; width: (3.8 ± 0.8) × 10[superscript 2] μm] at their top side, with a median peak density of 73 peaks per cm[superscript 2], while their bottom side resembles to a non-woven mesh commonly observed in the fabrication of two-dimensional electrospun materials. Regarding their thickness (3.7 ± 0.1 mm) and asymmetric fibrous inner architecture, such materials avoid external liquid absorption while promoting internal liquid uptake. Nevertheless, such constructs also observed the high porosity (89.9%) and surface area (1.44 m[superscript 2] g[superscript −1]) characteristic of traditional electrospun mats. Spray layer-by-layer assembly is used to effectively coat the structurally complex materials, allowing to complementary tailor features such as water vapor transmission, swelling ratio and bioactive agent release. Tested as wound dressings, the novel constructs are capable of withstanding (11.0 ± 0.3) × 10[superscript 4] kg m[superscript −2] even after 14 days of hydration, while actively promote wound healing (90 ± 0.5% of wound closure within 48 hours) although avoiding cell adhesion on the dressings for a painless removal.en_US
dc.description.sponsorshipCalouste Gulbenkian Foundationen_US
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (Portugal) (Contracts UID/QUI/50006/2013, MIT-Pt/BS-CTRM/0051/2008, and PTDC/EMETME/ 103375/2008)en_US
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (Portugal) (Doctoral Grant SFRH/BD/51188/2010)en_US
dc.description.sponsorshipMIT-Portugal Programen_US
dc.description.sponsorshipFonds Europeen de Developpement Economique et Regionalen_US
dc.description.sponsorshipFonds structurels européensen_US
dc.description.sponsorshipUnited States. Army Research Office (Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies. Contract W911NF-07-D-0004)en_US
dc.description.sponsorshipSanofi Aventis (Firm)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Center for Biomedical Engineeringen_US
dc.language.isoen_US
dc.publisherBrill Academic Publishersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c5bm00211gen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleThree-dimensional multilayered fibrous constructs for wound healing applicationsen_US
dc.typeArticleen_US
dc.identifier.citationReis, Tiago C. et al. “Three-Dimensional Multilayered Fibrous Constructs for Wound Healing Applications.” Biomater. Sci. 4.2 (2016): 319–330.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorReis, Tiago C.
dc.contributor.mitauthorCastleberry, Steven A
dc.contributor.mitauthorHammond, Paula T.
dc.relation.journalBiomaterials Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReis, Tiago C.; Castleberry, Steven; Rego, Ana M. B.; Aguiar-Ricardo, Ana; Hammond, Paula T.en_US
dspace.embargo.termsNen_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record