Show simple item record

dc.contributor.authorStokols, Logan
dc.contributor.authorTheobold, Allison
dc.contributor.authorChan, Alice Z.-Y.
dc.contributor.authorNarayan, Sivaram K.
dc.contributor.authorCopenhaver, Martin Steven
dc.date.accessioned2017-02-23T18:12:24Z
dc.date.available2017-02-23T18:12:24Z
dc.date.issued2015-10
dc.date.submitted2014-11
dc.identifier.issn1019-7168
dc.identifier.issn1572-9044
dc.identifier.urihttp://hdl.handle.net/1721.1/107123
dc.description.abstractA frame in an n-dimensional Hilbert space Hn is a possibly redundant collection of vectors {f[subscript i]}[subscript i∈I] that span the space. A tight frame is a generalization of an orthonormal basis. A frame {f[subscript i]}[subscript i∈I] is said to be scalable if there exist nonnegative scalars {c[subscript i]}[subscript i∈I] such that {c[subscript i]f[subscript i]}[subscript i∈I] is a tight frame. In this paper we study the combinatorial structure of frames and their decomposition into tight or scalable subsets by using partially-ordered sets (posets). We define the factor poset of a frame {f[subscript i]}[subscript i∈I] to be a collection of subsets of I ordered by inclusion so that nonempty J⊆I is in the factor poset iff {f[subscript j]}[subscript j∈J] is a tight frame for Hn. We study various properties of factor posets and address the inverse factor poset problem, which inquires when there exists a frame whose factor poset is some given poset P. We then turn our attention to scalable frames and present partial results regarding when a frame can be scaled to have a given factor poset; in doing so we present a bridge between erasure resilience (as studied via prime tight frames) and scalability.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Research Experience for Undergraduates (Program) (Grant DMS 11-56890)en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10444-015-9440-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleOn structural decompositions of finite framesen_US
dc.typeArticleen_US
dc.identifier.citationChan, Alice Z.-Y., Martin S. Copenhaver, Sivaram K. Narayan, Logan Stokols, and Allison Theobold. “On Structural Decompositions of Finite Frames.” Adv Comput Math 42, no. 3 (October 30, 2015): 721–756.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorCopenhaver, Martin Steven
dc.relation.journalAdvances in Computational Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:17:10Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media New York
dspace.orderedauthorsChan, Alice Z.-Y.; Copenhaver, Martin S.; Narayan, Sivaram K.; Stokols, Logan; Theobold, Allisonen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-9988-260X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record