MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of different nutrient concentrations on the growth rate and nitrogen storage of watercress (Nasturtium officinale R. Br.)

Author(s)
Fernandez-Going, Barbara; Even, Thomas; Simpson, Juliet
Thumbnail
Download10750_2012_Article_1380.pdf (429.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The mechanisms that allow broadly distributed aquatic plants to inhabit variable resource environments are unclear, yet understanding these mechanisms is important because broad environmental tolerance is often linked to invasiveness in terrestrial and aquatic plants. In an experimental stream, we examined the effects of different nutrient concentrations on the growth rate, biomass, and foliar nutrient concentrations of a cosmopolitan and potentially invasive aquatic plant, Nasturtium officinale (R. Br.). Nasturtium seedlings were grown under six nutrient treatment levels ranging from 0.64 μm N:0.09 μm P to 1531 μm N:204.13 μm P, for 8 weeks. Absolute and relative growth rates, and biomass of seedlings increased along a gradient of increasing nutrient concentrations but the effect of nutrient concentration was dependent on growing time. Seedling biomass varied among nutrient treatments in weeks 4 through 8 of the experiment, but did not differ in week 2. By week 8, the two highest nutrient treatments had greater biomass than the two lowest nutrient treatments. Foliar nitrogen concentration increased, whereas carbon concentration and C:N ratios decreased in response to increasing nutrients. Nasturtium grows slowly in nutrient-poor conditions but rapidly increases its growth, biomass accrual, and nitrogen storage as conditions become nutrient-rich. The response of Nasturtium to enhanced nutrient conditions may indicate how aquatic nuisance species successfully invade and dominate plant communities in streams, where resources often vary both temporally and spatially.
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/107126
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Sea Grant College Program
Journal
Hydrobiologia
Publisher
Springer Netherlands
Citation
Fernandez-Going, Barbara, Thomas Even, and Juliet Simpson. “The Effect of Different Nutrient Concentrations on the Growth Rate and Nitrogen Storage of Watercress (Nasturtium Officinale R. Br.).” Hydrobiologia 705, no. 1 (November 8, 2012): 63–74.
Version: Author's final manuscript
ISSN
0018-8158
1573-5117

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.