MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemical kinetics mechanism for oxy-fuel combustion of mixtures of hydrogen sulfide and methane

Author(s)
Bongartz, Dominik; Ghoniem, Ahmed F.; Ghoniem, Ahmed F
Thumbnail
DownloadFinalManuscript_BongartzGhoniem_2015_ChemicalKineticsMechanism.pdf (256.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Oxy-fuel combustion of sour gas, a mixture of natural gas (essentially methane (CH[subscript 4])), carbon dioxide (CO[subscript 2]), and hydrogen sulfide (H[subscript 2]S), could enable the utilization of large natural gas resources, especially when combined with enhanced oil recovery. In this work, a detailed chemical reaction mechanism for oxy-fuel combustion of sour gas is presented. To construct the mechanism, a CH[subscript 4] sub-mechanism was chosen based on a comparative validation study for oxy-fuel combustion. This mechanism was combined with a mechanism for H[subscript 2]S oxidation, and the sulfur sub-mechanism was then optimized to give better agreement with relevant experiments. The optimization targets included predictions for the laminar burning velocity, ignition delay time, and pyrolysis of H[subscript 2]S, and H[subscript 2]S oxidation in a flow reactor. The rate parameters of 15 sulfur reactions were varied in the optimization within their respective uncertainties. The optimized combined mechanism was validated against a larger set of experimental data over a wide range of conditions for oxidation of H[subscript 2]S and interactions between carbon and sulfur species. Improved overall agreement was achieved through the optimization and all important trends were captured in the modeling results. The optimized mechanism can be used to make qualitative and some quantitative predictions on the combustion behavior of sour gas. The remaining discrepancies highlight the current uncertainties in sulfur chemistry and underline the need for more accurate direct determination of several important rate constants as well as more validation data.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/107167
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Combustion and Flame
Publisher
Elsevier B.V.
Citation
Bongartz, Dominik, and Ahmed F. Ghoniem. “Chemical Kinetics Mechanism for Oxy-Fuel Combustion of Mixtures of Hydrogen Sulfide and Methane.” Combustion and Flame 162, no. 3 (March 2015): 544–553.
Version: Author's final manuscript
ISSN
00102180

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.