MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

Author(s)
Habib, Mohamed A. M.; Taamallah, Soufien; LaBry, Zachary A; Ghoniem, Ahmed F; Shanbhogue, Santosh
Thumbnail
DownloadGhoniem_Correspondence between.pdf (5.865Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure—or flame brush spatial distribution—and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane–air in the range of equivalence ratio (φ) from the lean blowout limit to φ=0.75. First, we observe the different dynamic modes in this lean range as φ is raised. We also document the effect of φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length—by downstream truncation—without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor—which occurs simultaneously with the onset of instability at the fundamental frequency—happens at similar φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with φ. The spectral analysis of this phenomenon—we refer to as “ORZ flame flickering”—shows the presence of unsteady events occurring at two distinct low frequency ranges. A broad band at very low frequency in the range ∼(1 Hz–10 Hz) associated with the expansion and contraction of the inner recirculation zone (IRZ) and a narrow band centered around 28 Hz which is the frequency of rotation of the flame as it is advected by the ORZ flow.
Date issued
2014-12
URI
http://hdl.handle.net/1721.1/107189
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Engineering for Gas Turbines and Power
Publisher
American Society of Mechanical Engineers
Citation
Taamallah, Soufien et al. “Correspondence Between ‘Stable’ Flame Macrostructure and Thermo-Acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion.” Journal of Engineering for Gas Turbines and Power 137.7 (2015): 071505.
Version: Final published version
ISSN
0742-4795

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.