MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semisimple and G-Equivariant Simple Algebras Over Operads

Author(s)
Etingof, Pavel
Thumbnail
Download10485_2016_Article_9435.pdf (156.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let G be a finite group. There is a standard theorem on the classification of G-equivariant finite dimensional simple commutative, associative, and Lie algebras (i.e., simple algebras of these types in the category of representations of G). Namely, such an algebra is of the form A=Fun[subscript H](G,B), where H is a subgroup of G, and B is a simple algebra of the corresponding type with an H-action. We explain that such a result holds in the generality of algebras over a linear operad. This allows one to extend Theorem 5.5 of Sciarappa (arXiv:1506.07565) on the classification of simple commutative algebras in the Deligne category Rep(S[subscript t]) to algebras over any finitely generated linear operad.
Date issued
2016-04
URI
http://hdl.handle.net/1721.1/107255
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Applied Categorical Structures
Publisher
Springer Netherlands
Citation
Etingof, Pavel. “Semisimple and G-Equivariant Simple Algebras Over Operads.” Applied Categorical Structures (April 20, 2016).
Version: Author's final manuscript
ISSN
0927-2852
1572-9095

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.