Show simple item record

dc.contributor.authorBai, Peng
dc.contributor.authorLi, Ju
dc.contributor.authorBrushett, Fikile R
dc.contributor.authorBazant, Martin Z
dc.date.accessioned2017-03-09T19:08:12Z
dc.date.available2017-03-09T19:08:12Z
dc.date.issued2016-09
dc.date.submitted2016-06
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/107260
dc.description.abstractNext-generation high-energy batteries will require a rechargeable lithium metal anode, but lithium dendrites tend to form during recharging, causing short-circuit risk and capacity loss, by mechanisms that still remain elusive. Here, we visualize lithium growth in a glass capillary cell and demonstrate a change of mechanism from root-growing mossy lithium to tip-growing dendritic lithium at the onset of electrolyte diffusion limitation. In sandwich cells, we further demonstrate that mossy lithium can be blocked by nanoporous ceramic separators, while dendritic lithium can easily penetrate nanopores and short the cell. Our results imply a fundamental design constraint for metal batteries (“Sand's capacity”), which can be increased by using concentrated electrolytes with stiff, permeable, nanoporous separators for improved safety.en_US
dc.description.sponsorshipMIT Energy Initiative (Robert Bosch GmbH)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMR-1410636)en_US
dc.description.sponsorshipStanford University. Global Climate and Energy Projecten_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Stanford University. SUNCAT Center for Interface Science and Catalysis)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c6ee01674jen_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleTransition of lithium growth mechanisms in liquid electrolytesen_US
dc.typeArticleen_US
dc.identifier.citationBai, Peng et al. “Transition of Lithium Growth Mechanisms in Liquid Electrolytes.” Energy Environ. Sci. 9.10 (2016): 3221–3229.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorBai, Peng
dc.contributor.mitauthorLi, Ju
dc.contributor.mitauthorBrushett, Fikile R
dc.contributor.mitauthorBazant, Martin Z
dc.relation.journalEnergy and Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBai, Peng; Li, Ju; Brushett, Fikile R.; Bazant, Martin Z.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
dc.identifier.orcidhttps://orcid.org/0000-0002-7361-6637
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record