dc.contributor.author | Bai, Peng | |
dc.contributor.author | Li, Ju | |
dc.contributor.author | Brushett, Fikile R | |
dc.contributor.author | Bazant, Martin Z | |
dc.date.accessioned | 2017-03-09T19:08:12Z | |
dc.date.available | 2017-03-09T19:08:12Z | |
dc.date.issued | 2016-09 | |
dc.date.submitted | 2016-06 | |
dc.identifier.issn | 1754-5692 | |
dc.identifier.issn | 1754-5706 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/107260 | |
dc.description.abstract | Next-generation high-energy batteries will require a rechargeable lithium metal anode, but lithium dendrites tend to form during recharging, causing short-circuit risk and capacity loss, by mechanisms that still remain elusive. Here, we visualize lithium growth in a glass capillary cell and demonstrate a change of mechanism from root-growing mossy lithium to tip-growing dendritic lithium at the onset of electrolyte diffusion limitation. In sandwich cells, we further demonstrate that mossy lithium can be blocked by nanoporous ceramic separators, while dendritic lithium can easily penetrate nanopores and short the cell. Our results imply a fundamental design constraint for metal batteries (“Sand's capacity”), which can be increased by using concentrated electrolytes with stiff, permeable, nanoporous separators for improved safety. | en_US |
dc.description.sponsorship | MIT Energy Initiative (Robert Bosch GmbH) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMR-1410636) | en_US |
dc.description.sponsorship | Stanford University. Global Climate and Energy Project | en_US |
dc.description.sponsorship | United States. Dept. of Energy. Office of Basic Energy Sciences (Stanford University. SUNCAT Center for Interface Science and Catalysis) | en_US |
dc.language.iso | en_US | |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1039/c6ee01674j | en_US |
dc.rights | Creative Commons Attribution-NonCommercial 3.0 Unported | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/ | en_US |
dc.source | Royal Society of Chemistry | en_US |
dc.title | Transition of lithium growth mechanisms in liquid electrolytes | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bai, Peng et al. “Transition of Lithium Growth Mechanisms in Liquid Electrolytes.” Energy Environ. Sci. 9.10 (2016): 3221–3229. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | en_US |
dc.contributor.mitauthor | Bai, Peng | |
dc.contributor.mitauthor | Li, Ju | |
dc.contributor.mitauthor | Brushett, Fikile R | |
dc.contributor.mitauthor | Bazant, Martin Z | |
dc.relation.journal | Energy and Environmental Science | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Bai, Peng; Li, Ju; Brushett, Fikile R.; Bazant, Martin Z. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7841-8058 | |
dc.identifier.orcid | https://orcid.org/0000-0002-7361-6637 | |
mit.license | PUBLISHER_CC | en_US |
mit.metadata.status | Complete | |