Show simple item record

dc.contributor.authorAvci, Ibrahim
dc.contributor.authordel Cañizo, Carlos
dc.contributor.authorMorishige, Ashley Elizabeth
dc.contributor.authorWagner, Hannes
dc.contributor.authorHofstetter, Jasmin
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2017-03-10T20:44:19Z
dc.date.available2017-03-10T20:44:19Z
dc.date.issued2015-08
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/1721.1/107393
dc.description.abstractWe couple numerical process and device simulations to provide a framework for understanding the combined effects of as-grown wafer impurity distribution, processing parameters, and solar cell architecture. For this study, we added the Impurity-to-Efficiency simulator to Synopsys’ Sentaurus Process software using the Alagator Scripting Language. Our results quantify how advanced processing can eliminate differences in efficiency due to different as-grown impurity concentrations and due to different area fractions of defective wafer regions. We identify combinations of as-grown impurity distributions and process parameters that produce solar cells limited by point defects and those that are limited by precipitated impurities. Gettering targeted at either point defect or precipitate reduction can then be designed and applied to increase cell efficiency. We also visualize the post-processing iron and total recombination distributions in 2D maps of the wafer cross-section. PV researchers and companies can input their initial iron distributions and processing parameters into our software and couple the resulting process simulation results with a solar cell device design of interest to conduct their own analyses. The Alagator scripts we developed are freely available online at http://pv.mit.edu/impurity-to-efficiency-i2e-simulator-for-sentaurus-tcad/.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant EEC-1041895)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Award DE-EE0006335)en_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipAlexander von Humboldt Foundation (Feodor Lynen Research Fellowship)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.egypro.2015.07.019en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleCombined Impact of Heterogeneous Lifetime and Gettering on Solar Cell Performanceen_US
dc.typeArticleen_US
dc.identifier.citationMorishige, Ashley E. et al. “Combined Impact of Heterogeneous Lifetime and Gettering on Solar Cell Performance.” Energy Procedia 77 (2015): 119–128.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorMorishige, Ashley Elizabeth
dc.contributor.mitauthorWagner, Hannes
dc.contributor.mitauthorHofstetter, Jasmin
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMorishige, Ashley E.; Wagner, Hannes; Hofstetter, Jasmin; Avci, Ibrahim; del Cañizo, Carlos; Buonassisi, Tonioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9352-8741
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record