MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Location utility-based map reduction

Author(s)
Steiner, Ted J; Huang, Guoquan; Leonard, John J
Thumbnail
DownloadLeonard_Location utility.pdf (1.616Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Maps used for navigation often include a database of location descriptions for place recognition (loop closing), which permits bounded-error performance. A standard pose-graph SLAM system adds a new entry for every new pose into the location database, which grows linearly and unbounded in time and thus becomes unsustainable. To address this issue, in this paper we propose a new map-reduction approach that pre-constructs a fixed-size place-recognition database amenable to the limited storage and processing resources of the vehicle by exploiting the high-level structure of the environment as well as the vehicle motion. In particular, we introduce the concept of location utility - which encapsulates the visitation probability of a location and its spatial distribution relative to nearby locations in the database - as a measure of the value of potential loop-closure events to occur at that location. While finding the optimal reduced location database is NP-hard, we develop an efficient greedy algorithm to sort all the locations in a map based on their relative utility without access to sensor measurements or the vehicle trajectory. This enables pre-determination of a generic, limited-size place-recognition database containing the N best locations in the environment. To validate the proposed approach, we develop an open-source street-map simulator using real city-map data and show that an accurate map (pose-graph) can be attained even when using a place-recognition database with only 1% of the entries of the corresponding full database.
Date issued
2015-07
URI
http://hdl.handle.net/1721.1/107401
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceeding of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers
Citation
Steiner, Ted J., Guoquan Huang, and John J. Leonard. “Location Utility-Based Map Reduction.” 2015 IEEE International Conference on Robotics and Automation (ICRA) (May 2015).
Version: Author's final manuscript
Other identifiers
INSPEC Accession Number: 15286382
ISBN
978-1-4799-6923-4
978-1-4799-6924-1
978-1-4799-6922-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.