Show simple item record

dc.contributor.authorAltermatt, Pietro P.
dc.contributor.authorNeedleman, David Berney
dc.contributor.authorWagner, Hannes
dc.contributor.authorBuonassisi, Anthony
dc.date.accessioned2017-03-15T15:23:11Z
dc.date.available2017-03-15T15:23:11Z
dc.date.issued2015-08
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/1721.1/107413
dc.description.abstractAdvanced solar cell architectures like passivated emitter and rear (PERC) and heterojunction with intrinsic thin layer (HIT) are increasingly sensitive to bulk recombination. Present device models consider homogeneous bulk lifetime, which does not accurately reflect the effects of heterogeneously distributed defects. To determine the efficiency potential of multicrystalline silicon (mc-Si) in next-generation architectures, we present a higher-dimensional numerical simulation study of the impacts of structural defects on solar cell performance. We simulate these defects as an interfacial density of traps with a single mid-gap energy level using Shockley-Read-Hall (SRH) statistics. To account for enhanced recombination at the structural defects, we apply a linear scaling to the majority-carrier capture cross-section and scale the minority-carrier capture cross-section with the inverse of the line density of traps. At 300 K, our simulations of carrier occupation and recombination rate match literature electron-beam-induced current (EBIC) data and first-principles calculations of carrier capture, emission, and recombination for all the energy levels associated with dislocations decorated with metal impurities. We implement our model in Sentaurus Device, determining the losses across different device architectures for varying impurity decoration of grain boundaries.en_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Engineering Research Centers Program (Cooperative Agreement EEC-1041895)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.egypro.2015.07.003en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleAssessing the Device-performance Impacts of Structural Defects with TCAD Modelingen_US
dc.typeArticleen_US
dc.identifier.citationNeedleman, David Berney et al. “Assessing the Device-Performance Impacts of Structural Defects with TCAD Modeling.” Energy Procedia 77 (2015): 8–14.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorNeedleman, David Berney
dc.contributor.mitauthorWagner, Hannes
dc.contributor.mitauthorBuonassisi, Anthony
dc.relation.journalEnergy Procediaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNeedleman, David Berney; Wagner, Hannes; Altermatt, Pietro P.; Buonassisi, Tonioen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8345-4937
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record