Show simple item record

dc.contributor.authorEinstein, David
dc.contributor.authorGunawan, Emily
dc.contributor.authorMacauley, Matthew
dc.contributor.authorJoseph, Michael
dc.contributor.authorPropp, James
dc.contributor.authorRubinstein-Salzedo, Simon
dc.contributor.authorFarber, Miriam
dc.date.accessioned2017-03-15T18:58:32Z
dc.date.available2017-03-15T18:58:32Z
dc.date.issued2016-09
dc.date.submitted2015-10
dc.identifier.issn1077-8926
dc.identifier.issn1097-1440
dc.identifier.urihttp://hdl.handle.net/1721.1/107421
dc.description.abstractWe introduce n(n-1)/2 natural involutions ("toggles") on the set S of non-crossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the function that sends π to the number of blocks of π) exhibits the homomesy phenomenon: the average of f over the elements of a T-orbit is the same for all T-orbits. We can apply our method of proof more broadly to toggle operations back on the collection of independent sets of certain graphs. We utilize this generalization to prove a theorem about toggling on a family of graphs called "2-cliquish." More generally, the philosophy of this "toggle-action," proposed by Striker, is a popular topic of current and future research in dynamic algebraic combinatorics.en_US
dc.language.isoen_US
dc.publisherEuropean Mathematical Information Service (EMIS)en_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i3p52/pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElectronic Journal of Combinatoricsen_US
dc.titleNoncrossing partitions, toggles, and homomesiesen_US
dc.typeArticleen_US
dc.identifier.citationEinstein, D., Farber, M., Gunawan, E., Joseph, M., Macauley, M., Propp, J., & Rubinstein-Salzedo, S. (2016). Noncrossing partitions, toggles, and homomesies. Electronic Journal of Combinatorics. ©2016 European Mathematical Information Service (EMIS)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverFarber, Miriamen_US
dc.contributor.mitauthorFarber, Miriam
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEinstein, David; Farber, Miriam; Gunawan, Emily; Joseph, Michael; Macauley, Matthew; Propp, James; Rubinstein-Salzedo, Simon.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1427-506X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record