MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Untying Knotted DNA with Elongational Flows

Author(s)
Renner, Christopher Benjamin; Doyle, Patrick S
Thumbnail
DownloadDoyle_Untying knotted.pdf (335.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present Brownian dynamics simulations of initially knotted double-stranded DNA molecules untying in elongational flows. We show that the motions of the knots are governed by a diffusion–convection equation by deriving scalings that collapse the simulation data. When being convected, all knots displace nonaffinely, and their rates of translation along the chain are topologically dictated. We discover that torus knots “corkscrew” when driven by flow, whereas nontorus knots do not. We show that a simple mechanism can explain a coupling between this rotation and the translation of a knot, explaining observed differences in knot translation rates. These types of knots are encountered in nanoscale manipulation of DNA, occur in biology at multiple length scales (DNA to umbilical cords), and are ubiquitous in daily life (e.g., hair). These results may have a broad impact on manipulations of such knots via flows, with applications to genomic sequencing and polymer processing.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/107433
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
ACS Macro Letters
Publisher
American Chemical Society (ACS)
Citation
Renner, C. Benjamin, and Patrick S. Doyle. “Untying Knotted DNA with Elongational Flows.” ACS Macro Letters 3.10 (2014): 963–967.
Version: Author's final manuscript
ISSN
2161-1653
2161-1653

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.