Show simple item record

dc.contributor.authorYendiki, Anastasia
dc.contributor.authorPanneck, Patricia
dc.contributor.authorSrinivasan, Priti
dc.contributor.authorStevens, Allison
dc.contributor.authorZollei, Lilla
dc.contributor.authorAugustinack, Jean
dc.contributor.authorWang, Ruopeng
dc.contributor.authorSalat, David
dc.contributor.authorEhrlich, Stefan
dc.contributor.authorBehrens, Tim
dc.contributor.authorJbabdi, Saad
dc.contributor.authorGollub, Randy
dc.contributor.authorFischl, Bruce
dc.date.accessioned2017-03-16T16:17:03Z
dc.date.available2017-03-16T16:17:03Z
dc.date.issued2011-10
dc.date.submitted2011-03
dc.identifier.issn1662-5196
dc.identifier.urihttp://hdl.handle.net/1721.1/107436
dc.description.abstractWe have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls.en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (Pathway to Independence Award EB008129)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Blueprint for Neuroscience Research (U01-MH093765)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (P41-RR14075 and U24-RR021382)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (R01-EB006758)en_US
dc.description.sponsorshipNational Institute on Aging (R01-AG022381)en_US
dc.description.sponsorshipNational Center for Complementary and Alternative Medicine (U.S.) (RC1-AT005728)en_US
dc.description.sponsorshipNational Institute of Neurological Disorders and Stroke (U.S.) (R01-NS052585, R21-NS072652, and R01-NS070963)en_US
dc.description.sponsorshipEllison Medical Foundation. Autism & Dyslexia Projecten_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fninf.2011.00023en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleAutomated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomyen_US
dc.typeArticleen_US
dc.identifier.citationYendiki, Anastasia. “Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy.” Frontiers in Neuroinformatics 5 (2011): n. pag. © 2011 Frontiers Mediaen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorFischl, Bruce
dc.relation.journalFrontiers in Neuroinformaticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYendiki, Anastasia; Panneck, Patricia; Srinivasan, Priti; Stevens, Allison; Zollei, Lilla; Augustinack, Jean; Wang, Ruopeng; Salat, David; Ehrlich, Stefan; Behrens, Tim; Jbabdi, Saad; Gollub, Randy; Fischl, Bruceen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record