Show simple item record

dc.contributor.authorWang, Chong
dc.contributor.authorSodemann Villadiego, Inti A.
dc.contributor.authorKimchi, Itamar
dc.contributor.authorTodadri, Senthil
dc.date.accessioned2017-03-17T15:17:24Z
dc.date.available2017-03-17T15:17:24Z
dc.date.issued2017-02
dc.date.submitted2016-12
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/107463
dc.description.abstractWe study the interplay of particle-hole symmetry and fermion-vortex duality in multicomponent half-filled Landau levels, such as quantum Hall gallium arsenide bilayers and graphene. For the ν=1/2+1/2 bilayer, we show that particle-hole-symmetric interlayer Cooper pairing of composite fermions leads to precisely the same phase as the electron exciton condensate realized in experiments. This equivalence is easily understood by applying the recent Dirac fermion formulation of ν=1/2 to two components. It can also be described by Halperin-Lee-Read composite fermions undergoing interlayer p[subscript x]+ip[subscript y] pairing. A renormalization group analysis showing strong instability to interlayer pairing at large separation d→∞ demonstrates that two initially decoupled composite Fermi liquids can be smoothly tuned into the conventional bilayer exciton condensate without encountering a phase transition. We also discuss multicomponent systems relevant to graphene, derive related phases including a Z[subscript 2] gauge theory with spin-half visons, and argue for symmetry-enforced gaplessness under full SU(N[subscript f]) flavor symmetry when the number of components N[subscript f] is even.en_US
dc.description.sponsorshipMIT Department of Physics Pappalardo Programen_US
dc.description.sponsorshipUnited States. Dept. of Energy (Grant DE-SC0008739)en_US
dc.description.sponsorshipSimons Foundation (Simons Investigator Award)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.95.085135en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleComposite fermion duality for half-filled multicomponent Landau levelsen_US
dc.typeArticleen_US
dc.identifier.citationSodemann, Inti et al. “Composite Fermion Duality for Half-Filled Multicomponent Landau Levels.” Physical Review B 95.8 (2017): n. pag. © 2017 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorSodemann Villadiego, Inti A.
dc.contributor.mitauthorKimchi, Itamar
dc.contributor.mitauthorTodadri, Senthil
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-02-23T23:00:03Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsSodemann, Inti; Kimchi, Itamar; Wang, Chong; Senthil, T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1824-5167
dc.identifier.orcidhttps://orcid.org/0000-0003-4203-4148
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record