Show simple item record

dc.contributor.authorFinn, Chelsea
dc.contributor.authorKaess, Michael
dc.contributor.authorTeller, Seth
dc.contributor.authorWang, Hsueh-Cheng
dc.contributor.authorPaull, Liam
dc.contributor.authorRosenholtz, Ruth Ellen
dc.contributor.authorLeonard, John J
dc.date.accessioned2017-03-17T15:59:59Z
dc.date.available2017-03-17T15:59:59Z
dc.date.issued2015
dc.identifier.isbn978-1-4799-9994-1
dc.identifier.urihttp://hdl.handle.net/1721.1/107466
dc.description.abstractNavigating in a previously unknown environment and recognizing naturally occurring text in a scene are two important autonomous capabilities that are typically treated as distinct. However, these two tasks are potentially complementary, (i) scene and pose priors can benefit text spotting, and (ii) the ability to identify and associate text features can benefit navigation accuracy through loop closures. Previous approaches to autonomous text spotting typically require significant training data and are too slow for real-time implementation. In this work, we propose a novel high-level feature descriptor, the “junction”, which is particularly well-suited to text representation and is also fast to compute. We show that we are able to improve SLAM through text spotting on datasets collected with a Google Tango, illustrating how location priors enable improved loop closure with text features.en_US
dc.description.sponsorshipAndrea Bocelli Foundationen_US
dc.description.sponsorshipEast Japan Railway Companyen_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-10-1-0936, N00014-11-1-0688, N00014-13-1-0588)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-1318392)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS.2015.7353895en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleBridging text spotting and SLAM with junction featuresen_US
dc.typeArticleen_US
dc.identifier.citationWang, Hsueh-Cheng, Chelsea Finn, Liam Paull, Michael Kaess, Ruth Rosenholtz, Seth Teller, and John Leonard. “Bridging Text Spotting and SLAM with Junction Features.” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (September 2015). ©2015 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.approverLeonard, John Jen_US
dc.contributor.mitauthorWang, Hsueh-Cheng
dc.contributor.mitauthorPaull, Liam
dc.contributor.mitauthorRosenholtz, Ruth Ellen
dc.contributor.mitauthorLeonard, John J
dc.relation.journal2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWang, Hsueh-Cheng; Finn, Chelsea; Paull, Liam; Kaess, Michael; Rosenholtz, Ruth; Teller, Seth; Leonard, Johnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3483-3011
dc.identifier.orcidhttps://orcid.org/0000-0003-2492-6660
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record